Abstract
Germanium (Ge) nanocrystals embedded in silica matrix is an interesting material for new optoelectronic devices. In this paper, standard silica-on-silicon waveguides with a core doped by Ge nanocrystals were fabricated using plasma enhanced chemical vapour deposition and reactive ion etching. The cross-sectional waveguide structures were investigated by scanning electron microscopy. Transmission of the waveguide was measured using a broadband light source covering the wavelength range from 500 nm to 1700 nm, and the results were compared against transmission through a standard waveguide. Strong absorption peaks at 1056.8 nm, 1263.2 nm and 1406 nm were observed. These are assigned to the quantum confinement effect in Ge nanocrystals in the core. Putting Ge nanocrystals in a waveguide enables easy material characterisation and potential application in an integrated lightwave circuit device.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.