Abstract

AbstractThere are many factors that have the potential to limit significant advances in device technology. These include the ability to arrange materials at shrinking dimensions and the ability to successfully integrate new materials with better properties or new functionalities. To overcome these limitations, the development of advanced processing methods that can organize various combinations of materials at nano-scale dimensions with the necessary quality and reliability is required. We have explored using a gallium focused ion beam (FIB) as a method of integrating highly mismatched materials with silicon by creating template patterns directly on Si with nanoscale resolution. These templates are potentially useful as a means of locally controlling topography at nanoscale dimensions or as a means of locally implanting Ga at specific surface sites. We have annealed these templates in vacuum to study the effects of ion dosage on local Ga concentration and topography. We have also investigated the feasibility of creating Ga nanodots using this method that could eventually be converted to GaN through a nitridation process. Atomic force microscopy and electron microscopy characterization of the resulting structures are shown for a variety of patterning and processing conditions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.