Abstract

Recent studies have elucidated a promising balance of physical and mechanical properties of sputter deposited nickel-molybdenum-tungsten (Ni-Mo-W) films that have a unique nanotwinned microstructure and promising potential for use in high temperature microelectromechanical systems (MEMS). The current study was undertaken to establish the feasibility of making nanotwinned Ni-Mo-W microcantilevers with standard microfabrication processing, to assess their dimensional stability, and to demonstrate the possibility of using nanotwinned Ni-Mo-W in metal MEMS devices. Deposition of Ni-Mo-W films in commercial sputtering chambers revealed a wide processing window for the formation of the requisite nanotwinned microstructure. Conventional photolithography and etchants were employed to shape blanket Ni-Mo-W films into freestanding microcantilever beams. Monitoring microcantilever deflections via interferometry provided a direct measure of residual stresses and overall dimensional stability. Heat treatments of 200°C and 400°C were used to mimic wafer bonding temperatures. At 400°C, microcantilevers exhibited modest stress relaxation, yielding beam deflection profiles on the nanometer scale and portending dimensional stability and control for future metal MEMS devices.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call