Abstract

Food-grade Pickering high internal phase emulsions (HIPEs) stabilized by a mixture of β-cyclodextrin (β-CD) and sugar beet pectin (SBP) were fabricated for the first time. The factors affecting the microstructures, mechanical properties, and stabilities of the Pickering HIPEs were systematically investigated. The corresponding hybrid particles were also separated and characterized to reveal the formation mechanism. The results indicated that the mixture could induce the formation of HIPEs with an oil phase volume fraction (φ) of 75% using a one-step high-speed shearing process at room temperature. The composition (the mass ratio of β-CD to SBP, Rc/s) and concentration (W) of the mixture had significant effects on the formation and properties of HIPEs. When W ≥ 1.0% and Rc/s = 2:2 or 3:1, HIPEs had smaller oil droplets, higher gel strengths, better centrifugation stabilities and lutein protection effects. The spectral analysis suggested that SBP could adhere to the surface of β-CD particles to form hybrid particles during the homogenization. Compared with native β-CD particles, these hybrid particles had higher ζ-potential absolute values, and the SBP could also increase the viscosity of the aqueous phase, which contributed to the formation and properties of these HIPEs.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call