Abstract

In this study, PLGA-NPs coated with folic acid-chitosan (PCF-NPs) loaded with Peganum harmala smoke extract (PSE) were synthesized (PSE-PCF-NPs), and their anti-cancer effects were evaluated. PSE-PCF-NPs were synthesized by the nanoprecipitation method and then characterized by DLS, SEM, and FTIR methods. HPLC and UV–vis spectroscopy were used to evaluate the PSE’s folic acid (FA) binding and encapsulation. PSE-PCF-NPs-mediated cell viability and apoptosis were investigated by MTT, qPCR, flow cytometry, AO/PI, and DAPI staining. Anti-oxidant properties of PSE-PCF-NPs were evaluated by ABTS, DPPH, FRAP, and ROS. Angiogenic effects of PSE-PCF-NPs were assessed by CAM assay. The PSE-PCF-NPs (276.16 nm, PDI: 0.25, zeta-potential: +32.31 mV, FB: 67.6% and %EE: 89%) demonstrated selective toxicity on MCF-7 cells (IC50: 75.65 μg ml−1). The occurrence of apoptosis in MCF-7 cells was confirmed by up-regulation of P53, Cas-3, and Cas-9 genes, increased SubG1 phase cells, and the results of fluorescent staining. Scavenging free radicals, reducing iron ions, increasing intracellular ROS, and decreasing SOD gene confirmed the anti- and pro-oxidant effects of PSE-PCF-NPs outside and inside MCF-7 cells. Reduction of angiogenic factors in CAM assay showed the anti-angiogenic effects of PSE-PCF-NPs. PSE-PCF-NPs, due to their anti-cancer properties, can be considered a therapeutic agent in cancer studies.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call