Abstract

In the powder compact melting technique, metallic foams are fabricated by heating a precursor, thus initiating cell growth and foam formation. Proper precursor fabrication is very important because the density distribution after foaming and the foamability are determined during the precursor-fabrication process. The fabrication of the precursor has to be performed very carefully because any residual porosity or other defects will lead to poor results in further processing. In order to evaluate the effect of the compaction parameters on the kinetics of the foaming process, a series of experiments were performed. In this study, 6061 aluminum foams having a closed-cell structure were fabricated by the powder compact method and an induction heating process. An induction coil was designed to obtain a uniform temperature distribution over the entire cross-sectional area of the precursor. To establish the foamable precursor fabrication conditions, the effects of process parameters such as titanium hydride content (0.1 to 1.5 wt pct) and the compression pressure of the foamable precursor (50 to 150 kN) on the pore morphology were investigated.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.