Abstract

Fluoropolymer microtubes with a smooth surface were fabricated in more than 70 % yield via reversible addition fragmentation chain transfer (RAFT) co-polymerization of N,N'-methylene bisacrylamide (MBA) gel fibers as both template and monomer, 2-(perfluoro-3-methylbutyl)ethyl acrylate (R-3420) as co-monomer, and pentaerythritol tetraacrylate (PET4A) as cross-linker. The resulting fluoropolymer microtubes were characterized fully by SEM, TEM, EDS, XPS, and FT-IR. The influence of the monomer composition on the yields and morphologies of the tubes were investigated in detail. The results indicated that polymer microtubes with a smooth surface were obtained at suitable amounts of R-3420 and PET4A. Because of the decreased solubility of MBA gel fibers, the wall thickness increased as more R-3420 was used. In the presence of PET4A, the solution polymerization could be facilitated and more R-3420 could be attached onto the tubes based on FT-IR analysis. The water contact angle and swelling ratio measurements both revealed the low hydrophilicity and high lipophilicity of the fluoropolymer microtubes, which made the sample able to absorb toluene selectively in a water/toluene two-phase system.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.