Abstract
Recently, flexible devices using intrinsically conductive polymers, particularly poly(3,4-ethylenedioxythiophene) (PEDOT), have been extensively investigated. However, most flexible wiring fabrication methods using PEDOT are limited to two-dimensional (2D) fabrication. In this study, we fabricated three-dimensional (3D) wiring using the highly precise 3D printing method of stereolithography. Although several PEDOT fabrication methods using 3D printing systems have been studied, few have simultaneously achieved both high conductivity and precise accuracy. In this study, we review the post-fabrication process, particularly the doping agent. Consequently, we successfully fabricated wiring with a conductivity of 16 S cm-1. Furthermore, flexible wiring was demonstrated by modeling the fabricated wiring on a polyimide film with surface treatment and creating a three-dimensional fabrication object.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.