Abstract

Transition metal dichalcogenides (TMDs) materials are from the two-dimensional (2D) materials family and have many benefits, comprising high carrier mobility and conductivity, high optical transparency, outstanding mechanical flexibility, and chemical stability, and are also favorable gas sensing materials because of their high surface-area-to-volume ratio. Nevertheless, their low gas-sensing performance in terms of low response, partial recovery, and poor selectivity obstruct the apprehension as high-performance 2D TMDs gas sensing materials. At this time, we explain the enhancement in gas-sensing performance of molybdenum disulfide (MoS2) nanoflakes (NF) by decorating with Lanthanum (La) at room temperature (25 °C). Our experiments show that the dynamic sensing response of the La decorated few-layered MoS2 (La@MoS2) sensor increases by ∼6 times than the pristine few-layered MoS2, which positions it first-ever reported values for NO2 gas detection. The sensitivity of the MoS2 and La@MoS2 found 0.627 and 3.346 ppm−1, respectively, towards NO2 gas. It is noteworthy that La has introduced to MoS2, and its selectivity towards the volatile organic compounds (VOCs) and other toxic gases improved drastically. Our outcomes show that the suggested method represents a successful approach for improving the gas sensing response of 2D TMDs sensors.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call