Abstract

The present paper describes a simple and low-cost method for the fabrication of mechanically flexible interdigitated @m-electrodes ([email protected]) and its application as immunosensor. [email protected] consist of two coplanar non-passivated interdigitated metallic @m-electrodes supported on a flexible transparent substrate, polyethylene naphthalate (PEN). Bioreagents deposition on PEN substrates becomes possible by depositing SiO2 on the electrodes surface (fingers and inter-digits space). These [email protected] were successfully applied for the development of a selective conductimetric immunosensor for the quantification of atrazine residues. The immunosensor has been demonstrated for detection of small amounts of atrazine, thanks to the use of immunoreagents specifically developed to detect this pesticide. The detection method applied is based on the use of antibodies labelled with gold nanoparticles. The presence of these particles amplifies the conductive signal; hence the immunosensor response was quantified using simple and inexpensive DC measurements. Immunochemical detection of the concentrations of atrazine is achieved by a competitive reaction which occurs before the inclusion of the labelled antibodies. The immunosensor shows limits of detection in the order of [email protected]^-^1, far below the maximum residue level ([email protected]^-^1) established by EU for residues of atrazine as herbicide in the wine grapes and other foodstuff products.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.