Abstract

The application of flexible sensors in the biomedical field is deepening. It is of great significance to develop flexible wearable sensors which are more in line with the needs of the public. A flexible polylactic acid membrane fabric was prepared by electrospinning method. The membrane was used as SERS active substrate by screen printing capture probe which combine Au nanoplates with antibodies to the target substance. Thioglycolic acid-labeled silver nanoparticles coupled with antibodies as SERS nanotags. The target substance can be fixed between the capture probe and SERS nanotags. Due to the high specific surface area between the spinning, the adhesion rate of the capture probe is higher than that of the rigid substrate, and the enrichment and hypersensitivity detection of the object to be tested could be realized. The membranes prepared are flexible, wearable, portable, highly biocompatible, and can be mass-produced for high-throughput detection. We then applied the sensor to the detection of SARS-CoV-2 with detection limits as low as 10 TU/mL. This membrane as a SERS substrate can offer a fast and non-invasive reference for the early diagnosis of respiratory infectious diseases similar to COVID-19.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.