Abstract
In this work, laboratory prepared PANI and it’s composite with carbon nanotubes (PANI/CNTs) were used for the fabrication of micropatterns on flexible polyethylene terephthalate (PET) substrate using the drop cast method and plasma technology. Plasma technology was employed as an adhesion promoter between the PET substrate and PANI layers, as was confirmed by the peel tests. The PANI and PANI-CNTs deposited layers on PET were thoroughly characterized in terms of the surface, as well as the structural morphology, by various microscopic and scanning probe techniques. Moreover, the electrical conductivity of the deposited layers was confirmed by broadband dielectric spectroscopy (BDS) and conductive atomic force microscopy (ORCA-AFM). The presence of CNTs in the PANI/CNTs composite was responsible for the more uniform and compact deposited layers and better electrical conductivity. The laboratory prepared PANI/CNTs samples excelled in terms of their stable conductivity in the whole frequency range.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.