Abstract

Flexible thin films of metal–carbon nanotube (CNT) with densely populated CNT morphology were fabricated by electrodeposition from an optimized copper bath. The substrate used for the present work is polyethylene film that was pre-deposited with electroless copper as a seed layer before CNT deposition. Optimum concentration of CNT was incorporated into copper bath and the electrodeposition was done at quiescent and agitation conditions. The bonding between the seed layer and the electrodeposited copper was good as revealed from adhesion test. Electrical as well as physical-mechanical property of the film was improved by CNT incorporation within the metal matrix. The topography and the texture of the metal–CNT deposit showed a well-refined structure as per scanning electron microscope (SEM), field emission scanning electron microscope (FE-SEM), and scanning probe microscope (SPM) analysis. The stability of the film was tested by cyclic voltammetric and stripping analysis under various applied conditions. Raman spectra and Fourier transfer infrared spectroscopic (FT-IR) analysis revealed the presence of CNT and the functionality of CNT within the copper matrix. Transmission electron microscope (TEM) analysis showed nucleation of copper on the surface of CNT walls.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.