Abstract

Y2O3 ceramic is a promising optical material for mid-infrared (IR) windows and domes. Improvements in the mechanical and thermal performance of this material have become urgent if it is to perform adequately under extreme conditions. Herein, Y2O3 nanopowders were produced through the nitrate pyrogenation method. The final Y2O3 transparent ceramics were fabricated with a hybrid sintering method combining low temperature presintering and a subsequent hot isostatic pressing (HIP) treatment. The synthesis of nanopowders and the fabrication of the final ceramic products were investigated in detail. The Y2O3 ceramic sample that was presintered at 1350 °C provided the optimum microstructure for HIP treatment and resulted in an average grain size of 0.5 µm. Owing to the reduced grain size, the flexure strength and Vickers hardness of the sample were improved to 180 MPa and 8.4 GPa, respectively. Furthermore, the achieved pure Y2O3 ceramic demonstrated an excellent thermal conductivity at high temperature.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.