Abstract
Optimizing highly porous fibrous ceramics, like bird’s nest structure, were obtained by vacuum impregnation method with mullite fibers and alumina sol as raw material. The influences of impregnation cycles on the property of the sample, such as porosity, compressive strength and room-temperature thermal conductivity were explored. The experimental results show that the 3D skeleton structure of the sample was constructed by the randomly arranged mullite fibers and inorganic particles. The content of alumina can be adjusted effectively by impregnation times and it increases with increasing impregnation cycles. The thermal conductivity and compressive strength can also be controlled via tailored impregnation cycles. The compressive strength of fibrous ceramic ranged from 1.03 MPa to 5.31 MPa, while the porosity decrease slightly from 85.3% to 73.8%. In the same time, the thermal conductivity increase from 0.037 W/(m·K) to 0.217 W/(m·K), indicating that the fibrous ceramic with high impressive and low thermal conductivity can be fabricated by impregnation method.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Wuhan University of Technology-Mater. Sci. Ed.
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.