Abstract

With the increasing usage of varied electronic devices, the induced electromagnetic interference (EMI) irradiation pollution has become a novel environmental pollution besides of water and air pollutions, drawing a great of interests from the scientists to address EMW radiation problem via designing various electromagnetic wave (EMW) absorbers, which is supposed to be with lightweight, thin thickness, wide effective absorbing bandwidth and strong absorbing capacity. One kind of the most attractive absorbers is magnetic carbon composites. Here, we successfully synthesized porous structural C/Fe composites by in-situ carbonization of pre-prepared FesOVwood fibers at 1000 °C. The EMW absorption property of C/Fe composites is excellent with a minimum RL value of -32.67 dB at 9.86 GHz, a matching thickness of 2.2 mm and a wide response bandwidth of 14.5 GHz. This excellent absorption performance is proved to be due to the continuous network of Fe3O4/Fe/ Fe3C hybrids, permitting optimal impedance matching, the strongest dielectric loss and the optimal magnetic loss. Moreover, the interface polarizations of Fe-Fe3C and Fe3O4-Fe interfaces, are positive to improve the microwave absorption performance.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call