Abstract
Catalytic degradation is a promising and ideal technology in environmental remediation. Among them, catalytic oxidation and photocatalysis respectively based on catalysts and photocatalysts both trigger broad interests because of their high removal activity. However, the reusability of the powder catalysts still faces substantial challenges. Here, a simple strategy is proposed to load Fe-BTC catalyst on aramid fabrics (AF) to construct Fe-BTC MOF @ aramid fabric (Fe-BTC@AF) composite materials with layer-by-layer in situ self-assembly methods. The experimental results illustrated that 98% isoproturon could be removed by Fe-BTC@AF20 with oxidant H2O2, while the single Fe-BTC@AF20 could photo-degrade 99% isoproturon within 7h. Meanwhile, it could sustain a high degradation rate of more than 80%, even if it had gone through 5 degradation cycles. Thus, the Fe-BTC@AF composite has a significant advantage in the recycling ability for degradation of isoproturon, which will have potential applications in the efficient removal of organic contaminants in water.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Environmental science and pollution research international
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.