Abstract

This research aims at the development of faucet using the techniques of hydroforming and bending. In this study, a tube made from stainless steel SUS 304 is used. Finite element model, including tube, dies and punches, are established using a commercial code LS-DYNA. Tensile test is used to obtain the material properties especially in true stress-strain curve. Piecewise linear plasticity model is used to simulate the plastic deformation of material during the forming process. The initial internal pressure is designed by using the theory of thick-walled cylinder subjecting to internal pressure only. Simulation is first used to find the optimal loading conditions for hydroforming and bending forming. Experiment is then performed to fabricate the prototype of faucets using the simulated loading parameters. The results show that good correlation of the distributed thickness and profile dimension between simulation and experiment are obtained.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.