Abstract

Emulsion templating has emerged as a cutting-edge technique to prepare a wide array of porous polymer-metal nanocomposites with intriguing properties. Using this strategy, we set out to prepare novel hierarchically porous poly(vinylsulfonic acid) beads, which were then used for the in situ production of silver nanoparticles to obtain poly(vinylsulfonic acid)-Ag nanocomposite beads via a facile approach. Owing to their multimodal macro-meso-/microporosity that accounts for their decent BET surface areas (170.75-197.74 m2/g) and easier mass diffusion and transport together with the synergistic benefits of very small silver nanoparticles (down to ∼3.77 nm), the nanocomposite beads are found effective to remove Hg(II) and RhB and to kill Escherichia coli (Gram-negative) and Staphylococcus aureus (Gram-positive) bacteria. The adsorption capacities (167.98-190.58 mg/g) of these materials for Hg(II) surpass some recently reported benchmark materials. The larger size (1.56 ± 0.20-1.50 ± 0.14 mm) of the beads that helps favor the handling and subsequent recovery for recycling is also very useful to further broaden the horizons of these materials to develop decentralized water treatment systems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.