Abstract

The aim of this research was to fabricate a nanofiber-modified pencil-graphite electrode using electro-spinning technique to application in the food simulant especially liquid foods, including dairy, juices and other liquid foods to detect the Zearalenone (ZEN) mycotoxin. This sensor was made at room temperature by Britton–Robinson (B- R) buffer with pH =6 to optimize the chemical and mechanical parameters. Cyclic voltammetry (CV), scanning electron microscopy (SEM), electrochemical impedance spectroscopy (EIS), and differential pulse voltammetry (DPV) were used for electrochemical and morphological characterization of the composite fibers. This sensor responded to ZEN over the concentration range of 5–30 and 60–100 nm with a linear behavior. According to the SEM images, bare graphite electrode, has a fairly unusable smooth surface. ZEN cathode peak is dependent on the pH changes related to the proton receptor groups on the structure of ZEN and the best signal for the square wave spectrum in the B-R buffer based on the maximum signal of the received stream was pH = 6 for ZEN. Based on the results 0.5 M of potassium nitrate as a supporter electrolyte was suitable to measure ZEN in the presence of the optimal electrode. Therefor electrospun sensor doped into PAN/nanofiber has a good characteristic in recognisation of ZEN in the liquid foods especially dairy product.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.