Abstract

Carbon nanotube (CNT)-based field emission displays (FEDs) have been fabricated using well-aligned nanotubes on substrates in situ grown by thermal chemical vapor deposition (CVD), and paste squeeze and surface rubbing techniques. Although the former seems to be an ultimate approach for CNT-based FED, a large area synthesis and uniform field emission over the entire area is not yet easily accessible. On the other hand, the latter is fully scalable on glass substrates and shows very high luminance of 1800 cd/m2 at 4 V/μm. The degradation of emission currents for single-wall carbon nanotubes was less than 10% in electrical aging tests. Large field-enhancement factors (23,000–46,000) and low turn-on voltages (1.5-3 V/μm) were attributed to well-aligned carbon nanotubes on substrates and a large number density of carbon nanotubes of 5-10 μm-2, which was confirmed by high-resolution scanning electron microscopy.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call