Abstract
Because transparent conductive oxide (TCO) thin films have more than 80% transmittance in visible spectrum, and high electrical conductivity, the TCO films are widely applied to flat panel displays and solar cells as transparent electrode materials. This study aims to develop a direct patterning technology on ZnO:Al (AZO) thin films by a diode-pumped solid state ultraviolet laser. The electrode patterns with array structures on AZO thin films were generated by a high-speed galvanometric scanning system. The optoelectronic properties of a patterned electrode have strong relation with the laser pulse frequency, the scan speed, and the patterning time. The surface morphology and roughness of patterned electrode were measured by three dimension confocal microscope and field emission scanning electron microscope, respectively. The resistivity of AZO thin films before and after laser patterning was measured by a four point probe instrument. The optical transmittance was recorded by a UV/VIS/NIR spectrophotometer. The experimental results indicated that the edge line width and depth decreased with increasing the scan speed. After the array patterns structure were formed by laser dry etching, the roughness Ra values of patterned area increased from 0.06μm to 0.16μm. These transmittances of patterned structure from 400nm to 800nm wavelengths averagely reached to 82%. The measured results of electrical conductively revealed that the resistivity gradually increased with increasing the pulse repetition frequency. In addition, surface morphologic examination on the straight lines, corners, and etched regions of patterned films revealed no micro-cracks observed which meant the patterned surface had a better surface quality.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.