Abstract

ABSTRACTPervaporation membrane technology is commercially successful in the dehydration of organic solvents, and the technology has potential for seawater desalination with high recovery because of its capability to treat highly saline water. But to make the technology advantageous over the other available membrane desalination technologies in terms of productivity flux without additional energy cost, the selective barrier layer is required to be extremely thin, defect‐free, hydrophilic, and selective to water. In this work, we prepared an efficient membrane by reinforcing a highly water‐permeable but continuous barrier layer of poly(vinyl alcohol)–silica (PVA‐SiO2) hybrid material on porous polysulfone hollow fibers. The PVA‐SiO2 in acidified and hydrated ethanol was aged at room temperature for a period to allow solvent evaporation to obtain the solution concentration desired for the reinforcement. The reinforced hollow fiber membrane with optimal PVA‐SiO2 barrier layer thickness exhibited a performance with a flux of 20.6 L m−2 h−1 and 99.9% salt rejection from a saline feed of 2000 ppm NaCl at 333 K. The effects of PVA‐SiO2, temperature, and feed salinity on the pervaporation performance of the membrane were also studied. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018, 135, 45718.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.