Abstract

The synthesis of silica-based yolk-shell nanospheres confined with ultrasmall platinum nanoparticles (Pt NPs) stabilized with poly(amidoamine), in which the interaction strength between Pt NPs and the support could be facilely tuned, is reported. By ingenious utilization of silica cores with different surface wettability (hydrophilic vs. -phobic) as the adsorbent, Pt NPs could be confined in different locations of the yolk-shell nanoreactor (core vs. hollow shell), and thus, exhibit different interaction strengths with the nanoreactor (strong vs. weak). It is interesting to find that the adsorbed Pt NPs are released from the core to the hollow interiors of the yolk-shell nanospheres when a superhydrophobic inner core material (SiO2 -Ph) is employed, which results in the preparation of an immobilized catalyst (Pt@SiO2-Ph); this possesses the weakest interaction strength with the support and shows the highest catalytic activity (88 500 and 7080 h(-1) for the hydrogenation of cyclohexene and nitrobenzene, respectively), due to its unaffected freedom of Pt NPs for retention of the intrinsic properties.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.