Abstract

Solution-processed organic-inorganic lead halide perovskites have shown photovoltaic performance above 23 %, attracting great attention. However, the champion devices require fabrication in a controlled inert/dry atmosphere. The development of highly efficient and stable perovskite solar cells under high-humidity atmosphere conditions for future commercialization is still challenging, especially for CH3 NH3 PbI3 (MAPbI3 ), which is vulnerable to moisture. In this study, a large-sized tert-butylammonium [C(CH3 )3 NH3 + ] organic cation was incorporated into the MAPbI3 crystalline structure, which could form a more stable 3 D crystalline structure and alleviate the decomposition caused by the humidity. It delivered a power conversion efficiency of 19.3 % upon preparation under a humid environment condition of 50 % relative humidity as well as improved humidity and thermal stability. Our work provides a facile strategy for improving perovskite performance and stability by introducing a new chemical additive for the future application of perovskite solar cells.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.