Abstract

Industrial water has a dual problem because of its strong acidic characteristics and the presence of heavy metals. Removing heavy metals from water in these severe conditions has special requirements. For this problem, an economic method was used for removing iron (Fe), copper (Cu), chromium (Cr), nickel (Ni) and manganese (Mn) with extremely acidic characteristics from water. This method depends on the preparation of nanohybrids through host–guest interactions based on nanolayered structures, organic species (stearic acid), polyvinyl alcohol (PVA) and carbon nanotubes (CNTs). The formation of nanohybrids was confirmed using different techniques through the expansion of the interlayered spacing of the nanolayered structure from 0.76 nm to 1.60 nm, 1.40 nm and 1.06 nm. This nano-spacing is suitable for trapping and confining the different kinds of heavy metal. The experimental results indicated that the prepared nanohybrid was more effective than GreensandPlus, which is used on the market for purifying water. The high activity of the nanohybrid is obvious in the removal of both copper and nickel because the GreensandPlus was completely inactive for these heavy metals under severe conditions. Finally, these experimental results introduce new promising materials for purifying industrial water that can work under severe conditions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call