Abstract

Flame retardant and antibacterial investigation of cellulose has attracted more and more attention. In order to improve the modification efficiency, inspired by multiple hydrogen bonding in spider silk, flame retardant and antibacterial dual function modified cellulose was achieved by multi structure hydrogen bonding in this research. A novel nano SiO2 based Schiff base flame retardant (SiAPH) and dodecyl quaternary ammonium salt (HDAC) were synthesized. Tannin (TA) was introduced as medium to provide synergistic flame retardant and antibacterial with SiAPH and HDAC. The flame retardancy assessment demonstrated that the limiting oxygen index (LOI) of modified cotton fabrics increased from 18% to 26.1%, and the peak of heat release rate (pHRR) decreased by 41.0%, UL-94 vertical combustion proved the modified cotton fabrics had capability of self-extinguishing. The antibacterial of modified fabrics were confirmed against Staphylococcus aureus and Escherichia coli, and the inhibition rate reached to 99.1%. In addition, it worth noting that the biocompatibility and antibacterial activity of modified fabrics were evaluated via MTS assay and establishment of animal wound model. Low toxicity of the fabrics was verified by the L929 fibroblast cells. The anti-infection experiment model showed that the modified fabrics had a positive effect on prevention of infection, and the wound healing rate reached to 86.8% after 14 days’ treatment. The flame retardancy, antibacterial and biocompatibility of the functional cotton fabrics indicated that they were ideal candidate for applications of vehicle interior, soft decoration in public and medical scene.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.