Abstract

Diamond-like carbon (DLC) thin films were grown on Si-(100) substrates by a magnetically-assisted pulsed laser deposition (PLD) technique. The role of magnetic field on the structural, morphological, mechanical properties and deposition rate of DLC thin films has been studied. The obtained films were characterized by Raman spectroscopy, X-ray photoelectron spectroscopy (XPS), atomic force microscopy (AFM), field emission scanning electron microscopy (FE-SEM) and nanoindentation techniques. It was found that the diamond-like character, thickness and deposition rate of the DLC films increase in the presence of magnetic field. The films deposited under magnetic field exhibit a denser microstructure and smoother surface with lower surface roughness. Meanwhile, the mechanical properties of the magnetically processed DLC thin films experience an improvement, relative to the conventionally processed ones. It seems that the DLC films deposited under magnetic field can be better candidate for hard and wear resistance coating applications.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call