Abstract

Processing agricultural wastes into densified materials to partially substitute wooden product production is significant for reducing the consumption of forest resources. This work proposes the fabrication of high-strength rice husk (RH)-based composite materials with poly(vinyl alcohol) (PVA) via densification by hot pressing. RH was pretreated in hot-compressed water (HCW) prior to pulverization and blending with PVA or PVA/glycerol (GL). The incorporation of PVA greatly improved the strength, toughness, and waterproofness of the composite plate, which was discussed with the help of a variety of composite characterizations. The tensile strength, flexural strength, and toughness of a composite of HCW-treated RH, PVA, and GL with a mass ratio of 80:20:2 were 42, 81 MPa, and 5.9 MJ/m3, respectively. The HCW treatment and blending with PVA and GL improved those properties of the hot-pressed original RH plate by factors of 2.5, 2.3, and 6.7, respectively, and reduced the water uptake and swelling ratio in water by 57 and 53%, respectively, despite the hydrophilic nature of PVA and GL. Altogether, this work outlines a valuable and sustainable approach to the efficient utilization of agricultural wastes.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call