Abstract

In this work, nanoporous gold (NPG) was prepared according to three different approaches, such as (i) anodization-electrochemical reduction (A-ECR, NPGA), (ii) dynamic hydrogen bubble template (DHBT, NPGB), and (iii) the combination of both methods (NPGA+B). Field-emission scanning electron microscopy (FE-SEM) and cyclic voltammetry (CV) were used to investigate the structural morphology and the electrochemical behavior of the fabricated materials. The NPGA+B electrode showed a large amount of surface defects and/or edges, greater electrochemical surface area (2.5 cm2), and increased roughness factor (35.4).Such outstanding features of the NPGA+B platform were demonstrated by the sensitive detection of methyl parathion (MP) in river water samples. CV results indicated nearly 25-fold, 6-fold, and 2.5-fold higher sensitivity for NPGA+B compared to that of bare Au, NPGA, and NPGB, respectively. Differential pulse voltammetry (DPV) results show a linear behavior in the MP concentration range of 5–50 ng mL−1 with a limit of detection (LOD) of 0.6 ng mL−1 and limit of quantification (LOQ) of 2.0 ng mL−1. Besides, the NPGA+B sensor also revealed excellent selectivity towards MP detection in the presence of other interfering molecules or ions, reproducibility, and repeatability.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call