Abstract

Liver transplantation is the primary treatment for end-stage liver disease. However, the shortage and inadequate quality of donor organs necessitate the development of alternative therapies. Bioartificial livers (BALs) utilizing decellularized liver matrix (DLM) have emerged as promising solutions. However, sourcing suitable DLMs remains challenging. The use of a decellularized spleen matrix (DSM) has been explored as a foundation for BALs, offering a readily available alternative. In this study, rat spleens were harvested and decellularized using a combination of freeze-thaw cycles and perfusion with decellularization reagents. The protocol preserved the microstructures and components of the extracellular matrix (ECM) within the DSM. The complete decellularization process took approximately 11 h, resulting in an intact ECM within the DSM. Histological analysis confirmed the removal of cellular components while retaining the ECM's structure and composition. The presented protocol provides a comprehensive method for obtaining DSM, offering potential applications in liver tissue engineering and cell therapy. These findings contribute to the development of alternative approaches for the treatment of end-stage liver disease.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call