Abstract

Transition metal oxides (TMOs) applied as catalysts whose catalytic activities are directly affected by their pores size and pores distributions. Herein, two-dimensional Cu-doped CeO2 (2D@Cu–CeO2) and three-dimensional Cu-doped CeO2 (3D@Cu–CeO2) were prepared by adopting the mesoporous silica SBA-15 and KIT-6 as templates, respectively. Nanometer Cu-doped CeO2 (nano@Cu–CeO2) was synthesized by the method of precipitation. All catalysts were evaluated for the catalytic oxidation of CO, and the 3D@Cu–CeO2 catalyst exhibited the highest catalytic activity (complete conversion temperature T100 = 50 °C), which can be ascribed to the three-dimensional porous channel structure, larger specific surface area and abundant active surface oxygen species. In addition, complete conversion of CO had remained the same after 3D@Cu–CeO2 was observed for 12 h, indicating it has the best catalytic stability for CO.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call