Abstract

Cu-doped ZnO nanoneedles have been successfully fabricated on glass, stainless steel mesh, and carbon cloth substrates with pre-coated ZnO seed film by a facile aqueous chemical growth method at the low reaction temperature. The copper chloride and 1,3 diaminopropane play critical roles to control grow the uniform and vertical-aligned Cu-doped ZnO nanoneedles on the glass substrate. In addition, the different reaction conditions (such as reaction time, copper precursors, zinc precursors, and reaction temperature) were also exploited to control the morphologies of Cu-doped ZnO nanostructures. The PL spectrum results have demonstrated that Cu-doped ZnO nanoneedles could reduce the photogenerated electrons from band gap, thus leading to effective separation of electrons and holes. Cu-doped ZnO nanoneedles grown on the carbon cloth substrate can provide a more surface active sites and separation efficiency of photogenerated electron-hole pairs, which exhibit excellent photocatalytic activity and stability for the photodegradation of methylene blue under 10 W UV light irradiation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.