Abstract
Purpose: To fabricate multifunctional nanocapsule via Pickering emulsion route to facilitate tumor-targeted delivery.Methods: Poly(N-isopropylacrylamide-co-acrylic acid) nanoparticles (PNA) stabilized nanocapsules were fabricated by Pickering emulsion (PE) technology. For controllable drug-release and enhancing targeted antitumor effects, the nanocapsules were crosslinked with cystamine and coupled on cell-surface molecule markers (cRGDfK) to achieve on-demand drug release and targeted delivery.Results: The fabricated PE and nanocapsules with average particle sizes (250 and 150 nm) were obtained. Encapsulation efficiency of hydrophobic anticancer drug (DOX) was determined as >90%. Release kinetic profiles for encapsulated nanocapsules displayed circulation stability and redox-sensitive releasing behavior with the supposed increase bioavailability. Both cytotoxicity assay, cellular uptake analysis and anticancer efficacy in B16F10 murine model demonstrated these redox-responsive drug-release and active targeted delivery.Conclusion: The results clearly demonstrated nanocapsule via PE route as promising candidate to provide an effective platform for incorporating hydrophobic drug for targeted cancer chemotherapy.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.