Abstract

CoSe2/CoP with rich Se- and P-vacancies and heterogeneous interfaces (v-CoSe2/CoP) is grown on the surface of nickel foam via a two-step strategy: electrodeposition and NaBH4 reduction, which can be used as the cathode material in asymmetric supercapacitors. The SEM characterization reveals the honeycomb-like structure of the v-CoSe2/CoP, and the results of EPR, XPS and HRTEM reveal the existence of anionic vacancies and heterogeneous interfaces in the v-CoSe2/CoP. The as-fabricated v-CoSe2/CoP exhibits high specific capacitance (3206 mF cm−2 at 1.0 mA cm−2) and cyclic stability (91 % capacitance retention after 2000 cycles). An asymmetric supercapacitor is assembled by using the v-CoSe2/CoP and activated carbon (AC) as cathode and anode materials, respectively, which displays a high energy density of 40.6 Wh kg−1 at the power density of 211.5 W kg−1. The outstanding electrochemical performances of the v-CoSe2/CoP might be ascribed to the synergistic effects of Se- and P-vacancies and the heterogeneous interfaces in the v-CoSe2/CoP.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.