Abstract

Superhydrophobic metallic surfaces have a wide range of applications; therefore, their fabrication has drawn widespread attention. The cross-section of wood has a tubular porous structure and exhibits hydrophobic properties. In this study, inspired by the hydrophobic properties of wood, we electroplated copper on porous wood charcoal surfaces to obtain a superhydrophobic copper surface possessing a structure mirroring that of wood in areas in contact with the wood charcoal. This study used pinewood and Fraxinus mandschurica as templates, which are first sintered under oxygen-free conditions to obtain wood charcoal that retains the porous structure of wood. A thick layer of copper is then electroplated onto the surfaces of the porous carbon. After the copper layer is peeled off, it is found that the copper surface in contact with the porous carbon have formed a microstructure that is a mirror image of the natural structure of wood. This copper surface exhibited excellent levels of hydrophobicity after fluorosilane modification, with contact angles as high as 150°.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call