Abstract

The paradox between safety and detonation performance, along with the intrinsic fragility of primary explosives, is the main bottleneck precluding their application in a micro-initiation system. To tackle these issues, we fabricate a flexible copper azide film (CA-C film@PF) via employing the metal-organic framework (MOF) film produced by electrospinning technique as the precursor, followed by pyrolysis treatment, in situ azide reaction, and perfluorinated coating procedures. The synergetic effect of MOF and interweaved polymer fiber endow the resultant copper azide film with excellent electrostatic stability and remarkable detonation performance. In particular, the electrostatic discharge sensitivity ( E50) value (9 mJ) is 180 times higher than that of the original copper azide powder (0.05 mJ) and the static electricity accumulation value (- Q) is 430 times lower than that of copper azide powder (0.04 vs 17.2 nC g-1). As the proof of concept, the copper azide film is further assembled in a micro-initiation device, which can successfully detonate the secondary explosives CL-20. Additionally, the superhydrophobic surface of the CA-C film@PF merit the initiation power even after being soaked in water.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.