Abstract

This study evaluates the performance of continuous carbon, Kevlar and glass fibre reinforced composites manufactured using the fused deposition modelling (FDM) additive manufacturing technique. The fibre reinforced nylon composites were fabricated using a Markforged Mark One 3D printing system. The mechanical performance of the composites was evaluated both in tension and flexure. The influence of fibre orientation, fibre type and volume fraction on mechanical properties were also investigated. The results were compared with that of both non-reinforced nylon control specimens, and known material property values from literature. It was demonstrated that of the fibres investigated, those fabricated using carbon fibre yielded the largest increase in mechanical strength per fibre volume. Its tensile strength values were up to 6.3 times higher than those obtained with the non-reinforced nylon polymer. As the carbon and glass fibre volume fraction increased so too did the level of air inclusion in the composite matrix, which impacted on mechanical performance. As a result, a maximum efficiency in tensile strength was observed in glass specimen as fibre content approached 22.5%, with higher fibre contents (up to 33%), yielding only minor increases in strength.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call