Abstract

The structural dimensions of the materials and the design of the components are important factor to optimize the electromagnetic wave (EMW) absorption. Herein, Ni nanoparticles and nitrogen-doped carbon-based composites (Ni@NC/NCNTs) were successfully synthesized under high-temperature carbonization by introducing dicyandiamide (DCDA) into flake-assembled flower spherical Ni-based metal-organic framework (Ni-MOF). The influence of the composition and structure of Ni@NC/NCNTs on the absorption properties of EMW are revealed by changing the carbonization temperature. It could be found that the Ni@NC/NCNT-600 composite exhibits a good absorption capacity in the C-band (4–8 GHz). At a filler loading of 30 wt%, its optimal reflection loss (RL) is −34.22 dB at 4.88 GHz. In addition, the effective absorption bandwidth (EAB) of 4.2 GHz could be obtained at 1.8 mm. And Ni@NC/NCNT-1000 composite also achieve the same bandwidth at thin thicknesses (1.21 mm). The reasonable adjustment of the filler loading and carbonization temperature would effectively improve the permittivity and achieve a good impedance matching. The multiple loss mechanisms make Ni@NC/NCNTs have excellent EMW absorption performance. The optimal RL of Ni@NC/NCNTs-800 composite could reach −56.05 dB at 3.32 mm thickness with 25 wt% filler loading. Therefore, it provides some ideas for developing high-performance carbon-based composites with three-dimensional conductive network structure.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call