Abstract
Optimal performance of background limited thermal detectors requires adequate control over all relevant sources of incident electromagnetic radiation. In addition to the radiant power incident from the scene of interest, undesired or spurious power can potentially couple to the sensor via its bias and readout circuitry employed to operate the device. One means of limiting the contribution of this stray radiation is to filter or block leakage associated with electrical connections in the detector environment. Here we discuss a fabrication methodology for realizing compact planar filters embedded in the wall of the detector enclosure whose tailored response controls the propagation of light through the far infrared. This approach consists of fabricating an array of boxed-stripline transmission line blocking filters to control thermal radiation incident via this path. Topologically, each superconducting center conductor is encased by a silicon dioxide dielectric insulator and surrounded by a metallic shield to form a single mode transmission line structure. We report on achieved attenuation and return loss and find that it replicates simulated data to a high degree.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.