Abstract

Micro-fine sphericalpowders are recommended for selective laser melting (SLM). However, they are mostly expensive due to the complex manufacturing technique and low yield. In this paper, using low-cost treated hydride-dehydride (HDH) Ti powders, commercial pure Ti (CP-Ti) was successfully fabricated by SLM. After 4-h milling, the resulting powders become near-spherical with no obvious angularity, and have optimal flowability with the apparent density of 1.64 ± 0.02 g/cm3, tap density of 2.10 ± 0.04 g/cm3, angle of repose 40.11°±0.09°, and Carr’s index of 77.74 ± 0.15. The microstructure was determined with full acicular martensitic α′ phase. The CP-Ti can achieve superior mechanical properties with the ultimate tensile strength of 876.1 ± 20.5 MPa and elongation of (14.7 ± 0.5)%, which exhibit distinctly competitive compared to the as-cast CP-Ti or Ti-6Al-4V. Excellent mechanical properties together with its low-cost make SLM-fabricated CP-Ti from modified HDH Ti powders show promising applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call