Abstract

A colon-targeted delivery system that can efficiently deliver and release quercetin is essential to improve its bioavailability. We previously found that hydrophobic ethyl cellulose (EC) nanofibers could efficiently deliver quercetin to colon, but the release of quercetin was limited. To address this problem, hydrophilic gelatin (GN) was used as a regulator, and quercetin-loaded nanofibers with different mass ratios of EC to GN (3:1, 1:1, 1:2, 1:3) were fabricated by electrospinning. All nanofibers had a cylindrical morphology and high encapsulation efficiency (over 94 %), and there existed molecular interactions among quercetin, EC, and GN. The high GN content reduced the thermal stability of nanofibers but increased their surface wettability. Besides, these nanofibers had good stability in acidic and aqueous foods. Importantly, the release of quercetin in the simulated gastrointestinal fluid was <3 %. The addition of GN was beneficial to the release of quercetin in colon, and nanofibers with EC to GN being 1:3 had a more preferable release performance. The anticancer activity of nanofibers against HCT-116 cells was proved by inhibiting cell viability through the induction of apoptosis. Therefore, these nanofibers are potential carriers for efficient colon-targeted delivery of bioactive compounds in the food industry.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.