Abstract

An enzyme-modified electrode was fabricated by entrapping glucose oxidase (GOx) and ferrocene (Fc) onto a multiwall carbon nanotube (MWCNT)-coated electrode. The MWCNT, Fc, GOx, and chitosan (CHI) were sequentially coated on a glassy carbon electrode. The MWCNT/Fc/GOx/CHI electrode was characterized by scanning electron microscopy (SEM), and cyclic voltammetry (CV). The prepared electrode exhibited good electrochemical performance for the glucose analysis with a linear range of 0–60 mM glucose. It was found that the MWCNT film on the electrode remarkably enhanced the performance of the electrode. The MWCNT/Fc/GOx/CHI electrode was integrated with a bilirubin oxidase-immobilized cathode for a biofue cell application. The maximum power density at a glucose concentration of 10 mM was 13 μW/cm2 at a cell voltage of 0.19 V. The results of this study indicate that the MWCNT/Fc/GOx/CHI electrode could be applied in the development of biofuel cells and bisensors.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.