Abstract

Chitosan, a naturally occurring polysaccharide with abundant resources, has been extensively exploited for various biomedical applications, typically as wound dressings owing to its unique biocompatibility, good biodegradability and excellent antibacterial properties. In this work, composite nanofibrous membranes of chitosan (CS) and silk fibroin (SF) were successfully fabricated by electrospinning. The morphology of electrospun blend nanofibers was observed by scanning electron microscopy (SEM) and the fiber diameters decreased with the increasing percentage of chitosan. Further, the mechanical test illustrated that the addition of silk fibroin enhanced the mechanical properties of CS/SF nanofibers. The antibacterial activities against Escherichia coli (Gram negative) and Staphylococcus aureus (Gram positive) were evaluated by the turbidity measurement method; and results suggest that the antibacterial effect of composite nanofibers varied on the type of bacteria. Furthermore, the biocompatibility of murine fibroblast on as-prepared nanofibrous membranes was investigated by hematoxylin and eosin (H&E) staining and MTT assays in vitro, and the membranes were found to promote the cell attachment and proliferation. These results suggest that as-prepared chitosan/silk fibroin (CS/SF) composite nanofibrous membranes could be a promising candidate for wound healing applications.

Highlights

  • As a naturally occurring polysaccharide polymer, chitin is one of the most abundant natural biomaterials which can be obtained from shells of crustaceans

  • The objective of this paper is to find the properties of electrospun CS/silk fibroin (SF) nanofibers, including the morphologies of CS/SF composite nanofibers, the mechanical properties, antibacterial activities and biocompatibility in vitro, which could be beneficial to the composite nanofibrous membranes serving as varied wound dressings

  • The other parameters involving voltage, collecting distance, feed rate and solution concentration were fixed during electrospinning, fiber diameters are mainly dependent on the ratio of chitosan to silk fibroin

Read more

Summary

Introduction

As a naturally occurring polysaccharide polymer, chitin is one of the most abundant natural biomaterials which can be obtained from shells of crustaceans. Chitosan is a partially N-deacetylated derivative of chitin, consisting of polymeric (1→4)-linked 2-amino-2-deoxy-β-D-glucopyranose units [1]. A range of different processing techniques have been developed to fabricate micro- or nano-scale fibrous matrices, including self-assembly [4], template-directed synthesis [5], phase separation [6], and electrospinning [7,8,9,10]. Among these techniques, electrospinning has been regarded as a facile and effective way to fabricate ultrafine fibers from a variety of synthetic or natural polymers [11]. Due to their high surface to volume ratio, high porosity and good inter-pore connectivity, electrospun nanofibers can be used as filter materials, sensors, wound dressings, controlled release carriers, and tissue engineering scaffolds [12]

Objectives
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call