Abstract

Hybrid fibrous mat containing cell interactive molecules offers the ability to deliver the cells and drugs in wound bed, which will help to achieve a high therapeutic treatment. In this study, a co-electrospun hybrid of polyvinyl alcohol (PVA), chitosan (Ch) and silk fibrous mat was developed and their wound healing potential by localizing bone marrow mesenchymal stem cells (MSCs)-derived keratinocytes on it was evaluated in vitro and in vivo. It was expected that fabricated hybrid construct could promote wound healing due to its structure, physical, biological specifications. The fabricated fibrous mats were characterized for their structural, mechanical and biochemical properties. The shape uniformity and pore size of fibers showed smooth and homogenous structures of them. Fourier transform infrared spectroscopy (FTIR) verified all typical absorption characteristics of Ch-PVA + Silk polymers as well as Ch-PVA or pure PVA substrates. The contact angle and wettability measurement of fibers showed that mats found moderate hydrophilicity by addition of Ch and silk substrates compared with PVA alone. The mechanical features of Ch-PVA + Silk fibrous mat increase significantly through co-electrospun process as well as hybridization of these synthetic and natural polymers. Higher degrees of cellular attachment and proliferation obtained on Ch-PVA + Silk fibers compared with PVA and Ch-PVA fibers. In terms of the capability of Ch-PVA + Silk fibers and MSC-derived keratinocytes, histological analysis and skin regeneration results showed this novel fibrous construct could be suggested as a skin substitute in the repair of injured skin and regenerative medicine applications.

Highlights

  • Scaffolds are bioactive substrates that play vital role in tissue repair and regeneration since they could mimic components and structural perspectives of extracellular matrix (ECM) [1,2,3,4]

  • The produced Ch-Poly vinyl alcohol (PVA) + Silk fibrous mat was bead-free and smooth without any branching in regular shape during the process and observation showed that blended fibers get greater fiber flexibility

  • The Ch-PVA + Silk fiber had a porosity of 68 ± 4.4% of the total scaffold volume in comparison with 74 ± 3.9% and 52 ± 4.7% for neat PVA and hybrid Ch-PVA fibrous mats (Table 1)

Read more

Summary

Introduction

Scaffolds are bioactive substrates that play vital role in tissue repair and regeneration since they could mimic components and structural perspectives of extracellular matrix (ECM) [1,2,3,4]. Natural ECM consists of diverse interwoven protein fibers with nanometer diameters and nanoscale structure [1, 2, 6, 8] These nanoscale structures can support cell functions and direct cell fate [1, 2, 6]. Singlecomponent biopolymer is generally insufficient for good physical and biochemical fiber specifications [2, 14, 16, 19,20,21] To overcome these limitations, recent effort has been given to takes advantage of the physical properties of the synthetic polymers and the bioactivity of the natural polymers while minimizing disadvantages of both combine for the preparation of electrospun fibers [2, 14, 16, 19,20,21]

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.