Abstract

Groundwater contaminated by arsenic endangers our health. Therefore, in this work, a novel composite adsorbent consisting of magnetic chitosan (MCS), zinc oxide (ZnO), and sodium alginate (Alg) was prepared to remove arsenic from groundwater. First, chitosan was coated on the surface of Fe3O4 nanoparticles by coprecipitation. Then, MCS/ZnO@Alg gel beads were fabricated by combining MCS with ZnO and Alg, and crosslinking the composite material in the presence of Ca2+ ions. The MCS/ZnO@Alg beads were characterized by SEM, FTIR spectroscopy, XRD, VSM, and XPS. The adsorption experiments revealed that the MCS/ZnO@Alg magnetic gel beads have high stability and As(V) adsorption capability, and adsorbed As(V) through chemical adsorption. The maximum As(V) adsorption capacity as determined from the Langmuir model was 63.69 mg/g. In addition, MCS/ZnO@Alg exhibited good recyclability and high sustainability. This work proves that the MCS/ZnO@Alg gel beads are an ideal candidate for addressing the grievous environmental threats caused by water pollution.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.