Abstract

To increase the cellular uptake and drug loading of cellulose nanocrystal (CNC)-based nanomedicines, folate/ cis-aconityl-doxorubicin@polyethylenimine@CNC (FA/CAD@PEI@CNC) nanomedicines were built up by the building blocks of folate (FA), cis-aconityl-doxorubicin (CAD), polyethylenimine (PEI), and CNCs via the robust layer-by-layer (LbL) assembly technique. The drug loading content (DLC) of FA/CAD@PEI@CNC hybrids was 11.3 wt %, which was almost 20-fold higher than that of the CNC-based nano-prodrug we reported previously. FA/CAD@PEI@CNC nanomedicines showed lysosomal pH-controlled drug release profiles over 24 h. In detail, the cumulative drug release was over 95% at pH 5.5, while the cumulative drug release was only 17% at pH 7.4. In vitro, FA/CAD@PEI@CNC hybrid nanomedicines had a higher (9.7-fold) mean fluorescent intensity (MFI) than that of DOX·HCl, with enhanced cytotoxicity and decreased IC50 against MCF-7. Thus, FA/CAD@PEI@CNC hybrid nanomedicines displayed efficient targetability and enhanced cellular uptake. In addition, FA/CAD@PEI@CNC nanomedicine could deliver more DOX to the nucleus than the control group, due to the β-carboxylic acid catalyzed breakage of the pH-labile cis-aconityl amide linkages in CAD. These results indicated that FA/CAD@PEI@CNC nanomedicines achieved lysosomal pH-controlled drug release into the nucleus and showed great potential to be high-performance nanomedicines to improve the delivery efficiency and therapy efficacy. This study for CNC-based nanomedicines provided important insights into the bioapplication of CNCs modified by LbL assembly.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.