Abstract
The extensive use of petroleum-based dielectric composites has caused many environmental problems, which has forced us to turn our attention to biodegradable materials. In this study, cotton cellulose and PVDF were codissolved and regenerated as a matrix film in an elaborate way, and barium titanate (BT) nanoparticles were added to ensure high energy storage performance. Strong hydrogen bonds formed between the fluorine atoms of PVDF and the abundant hydroxyl groups of cellulose molecules, which were more robust than their own intramolecules; these strong hydrogen bonds promoted polarization intensity, thus improving the energy storage density of the matrix (from 6.50 J/cm3 @3.20 MV/cm of pristine PVDF film to 8.29 J/cm3 @3.20 MV/cm). Upon the addition of BT nanofillers, the cellulose/PVDF-BT ternary film exhibited an impressive breakdown strength (3.70 MV/cm) and a giant energy storage density (10.81 J/cm3). In addition, the composite film possessed excellent tensile strength (∼60 MPa). The electrical breakdown behavior was confirmed and visualized by finite element simulation. Significantly, our work has instructive implications for fabricating flexible energy storage devices based on renewable bioresources.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Composites Part A: Applied Science and Manufacturing
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.