Abstract

The aim of the present research is to fabricate a biosorbent using agricultural waste for removal of uranium from contaminated water i.e. “waste to wealth” approach. Cellulose extracted from wheat straw was mercerized and a novel semi-interpenetrating polymer network (semi-IPN) was fabricated through graft copolymerization of polyvinyl alcohol onto hybrid mercerized cellulose + collagen backbone. Response surface methodology was used for optimization of different reaction parameters as a function of % grafting (195.1 %) was carried out. Semi-IPN was found to possess higher thermal stability. Adsorption results revealed that the optimum parameters for the elimination of uranium using semi-IPN were: adsorbent dose = 0.15 g, pH = 6.0, contact time = 120 min and initial U (VI) concentration = 100 μg/L. The pseudo-second-order kinetic model gave the best description of the adsorption equilibrium data as the calculated qe value is nearest to the experimental qe for the different initial U(VI) concentrations. Adsorption experiments followed Langmuir isotherm with R2 = 0.999. Furthermore, recyclability and reusability studies showed that the adsorption efficiency of semi-IPN was 82 % after 5 cycles indicating the superior recycling execution of fabricated biosorbent. Thus, the fabricated ecofriendly device can be used effectively for the removal of uranium from contaminated wastewater sources.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.