Abstract

CdS-SBA-15 nanomaterials were synthesized by solvothermal method using cadmium nitrate as cadmium source and thiourea as sulfur source. The properties of as-prepared materials were characterized by means of XRD, FTIR, TEM, XPS, N2 physisorption, UV-Vis DRS and PL spectra, etc. The results show as-synthesized materials have partially ordered mesoporous structure, larger specific surface area, and higher content of CdS and good crystallinity. The combination of SBA-15 and CdS did almost no reduction in the absorption light range of CdS, but greatly increased the photocapacity of the composite. The synergistic effect of CdS and SBA-15 leads to improving the photocatalytic degradation activity of salicylic acid under visible light. When the photocatalyst was 30mg (0.75g/L) and the concentration of salicylic acid was 10mg/L, the maximum degradation efficiency of salicylic acid was 84.93% after 6h of light. Photocatalytic reaction has a lower activation energy (2.90kJ/mol), activation enthalpy (3.13kJ/mol) and activation entropy (-281.00J/(mol K)). The photocatalytic mechanism study demonstrates that superoxide radicals (O2•-) are the most key active species, e- and h+ have something to do with the photocatalytic reaction, while ·OH has little to do with the photocatalytic reaction. In sum, the protection effect of SBA-15 on CdS nanomaterials makes the composite have a higher photolumination intensity and a higher photocatalytic activity.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call